If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-20=0
a = 2; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·2·(-20)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*2}=\frac{0-4\sqrt{10}}{4} =-\frac{4\sqrt{10}}{4} =-\sqrt{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*2}=\frac{0+4\sqrt{10}}{4} =\frac{4\sqrt{10}}{4} =\sqrt{10} $
| .2x-5.7=3.9 | | 5(3+x)=6(7-x) | | 4x5-x=12 | | 3=5x-38 | | 4x+7x-2x-5=40 | | 12d+6=240-45d | | 4.8+10m=7.76 | | p-0.2p=28.76 | | 0=64t+16t^2 | | 4x3+6x2+18x+5=0 | | 2(3x+5)=-49+5 | | 6x+13x-16+7x+12=360 | | H=192t-16t^2 | | 11+19=-3(9x-10) | | -14+42=-4(x+4) | | (2x-2)^2=54 | | (x-2)^2-(81)=0 | | 2x^+4x-9=0 | | 4(x+)+4=32 | | 4x+8+4x+4=180 | | 2(x-3)-3x=15-(x+6) | | Y=1.23x+1.86 | | 3(x+2)=2(+ | | F(x)=-0.5x+6 | | 2-(2-x)=0 | | 4(2a+3)=12-8a | | 3x−2.4= | | (7x+11)+(16x-38)=180 | | 3x(x-2)=11x^2-13x | | 12w/48=12 | | 3(x-6)^2+10=46 | | 45=x/7 |